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Received 1 August 1986 

Abstract. Hinton and Sejnowski have described recently a novel statistical mechanical 
system which they named the Boltzmann machine. The interesting property of Boltzmann 
machines is that they can learn to recognise the structure in a set of patterns simply by 
being shown an example subset of patterns. In this paper some numerical simulations of 
Boltzmann machines are reported. It is found that the annealing schedule proposed by 
Ackley, Hinton and Sejnowski is adequate to obtain a Boltzmann distribution of states, 
on which the key part of the algorithm depends, but it is clear that the algorithm will 
require massive computations for large networks. It is also found that there is a window 
of annealing temperatures at which learning is possible, and the sensitivity of the learning 
rate to temperature can be understood in terms of the density of states at low energies. 
Direct calculations of the partition function in small instances of Boltzmann machines are 
used to characterise the number of states which are thermally accessible for particular 
annealing schedules. Finally, since Boltzmann machines bear some resemblance to models 
of disordered magnetic systems, a comparison is made with results for the Sherrington- 
Kirkpatrick spin-glass model. Both systems support multiple metastable states (i.e. stable 
with respect to single spin flips), but, in contrast to the SK spin glass, Boltzmann machines 
exhibit a random distribution of low-energy states in terms of Hamming distance. 

1. Introduction 

There is currently considerable interest in the computational abilities of networks of 
simple processing units. Such networks loosely resemble neural networks in that they 
have high connectivity, a highly non-linear response at the ‘neuron’ and each neuron’s 
output is determined by whether or not a weighted sum of the inputs from other 
neurons exceeds some threshold. Networks have been proposed which show fascinating 
emergent collective properties including the ability to memorise patterns and to recall 
perfectly stored patterns, given noisy or incomplete cues. Apart from the possible 
relevance of this behaviour to information processing in living systems, these models 
are promising candidates for pattern recognition devices and for fault-tolerant, content- 
addressable memories (CAM) with some capacity for error correction. A key difference 
between neural network models and conventional computer memories is that informa- 
tion is not stored locally at an address but in a distributed fashion throughout the 
whole network as a stable state of the dynamical system. Statistical mechanics is 
therefore a natural tool for the study of these systems, and the more simple models 
have already shown a rich variety of physical behaviour (Amit et a1 1985a, b, Bruce 
et al 1986, Gardner 1986, Wallace 1985), with some similarities to that found in 
disordered magnetic systems. 

A network consists of a set of N units, S = {a,; i = 1 , .  . . , N } ,  where in some 
models the units are two-state units (a,  = 0 or 1, or U, = k l )  and in others they can 
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2134 D G Bounds 

take continuous values in the range ( 0 , l ) .  The units are joined by a set of scalar links 
W = { w0; i, j = 1,. . . , N } .  For symmetric links, w , ~  = w,, this is sufficient to define a 
Hamiltonian: 

N N  

E (  w, S ) = - C  wijcriicrj. 
i = ]  j = i  

A pattern to be stored defines the state of a set, V,  of ‘visible’ units, V E  S, and a 
learning algorithm subsequently adjusts the connections W so that stored patterns 
correspond to low-energy states of the network. 

In the simplest models, such as the one now associated with Hopfield (1982), a 
pattern fixes the states of all units, i.e. V = S. There is then no internal coding of 
patterns (beyond the fact that they correspond to energy minima) and input patterns 
which are close in Hamming distance produce the same output pattern. Although 
such networks exhibit the storage behaviour described above, they are limited by their 
inability to map dissimilar input patterns onto the same output where necessary. This 
may be achieved by networks containing a set of ‘hidden’ units, H = S -  V,  whose 
states are not fixed directly by the input patterns. A network with hidden units is 
shown in figure 1. Because the hidden units must generate some internal coding of 
the input patterns (since the input and output units in figure 1 are not connected to 
each other directly), they may act as feature detectors. Networks containing hidden 
units therefore show additional interesting behaviour beyond that possible in networks 
without hidden units. One simple example where hidden units are necessary is compu- 
tation of the exclusive OR function (XOR) which has the truth table shown in table 
1. In this problem patterns with the least overlap are required to give the same output. 
The XOR problem can be solved with appropriate connection strengths to a hidden 
unit whose state depends on whether or not the states of both input units are the same 
(Rumelhart et a1 1986). In general, hidden units are necessary when the state of an 
output unit depends on the states of two or more input units: hidden units capture 
non-pairwise additive correlations in the input patterns. 

I n p u t  p a t t e r n s  

c 
I n p u t  un i ts  

Hidden uni ts  

Output un i t s  

1 i 
O u t p u t  p a t t e r n s  

Figure 1. A network with hidden units. In this example the visible set V consists of the 
input and output units. Because the input and output units can only communicate via the 
hidden units, the network must learn connection strengths which result in an internal 
coding of the input patterns using the states of hidden units. 
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Table 1, Truth table for the exclusive OR function. In a network model which computes 
this function, each element of the input and output patterns would be represented by the 
state of a visible unit. 

Input pattern Output pattern 

F F  
F T  
T F  
T T  

F 
T 
T 
F 

There have been several numerical and theoretical studies of the Hopfield model 
(Amit et a1 1985a, b, Wallace 1985, Bruce et a1 1986, Gardner 1986) and many of its 
properties have been elucidated. However, apart from the work of the original authors, 
we are not aware of any studies of the archetypal hidden unit model: the Boltzmann 
machine (Hinton et a1 1983, Ackley et a1 1985). In view of the novel behaviour which 
this system has demonstrated, at least for small model problems, a statistical mechanical 
study is timely. Here we investigate how the behaviour of Boltzmann machines depends 
upon various parameters in order to see how the algorithm might scale to large systems. 
Direct calculations of the partition function and the density of states give insights into 
the number of states which must be thermally accessible if the machine is to learn 
successfully, and into the sensitivity of the learning rate to temperature. The relationship 
between the Boltzmann machines and spin glasses is also discussed. 

The general Boltzmann machine algorithm is described in § 2, and in § 3 a model 
problem, the v - h - v  encoder (Ackley et a1 1985), is outlined. Section 4 describes the 
calculations. The main body of the results is in 9 S ,  and the conclusions are summarised 
in § 6. 

2. The Boltzmann machine algorithm 

Boltzmann machines are so called because they are stochastic systems in which the 
relative probability of two network states cy and p depends on their energy difference 
through the Boltzmann relation: 

where the temperature T is in inverse energy units. For a comprehensive description 
of Boltzmann machines, readers should consult the elegant paper of Ackley et a1 
(1985). Here is a brief outline of the salient features. 

In the original formulation U, = 0 or 1 and the (symmetric) links take even integer 
values. Dynamics are provided by a variant of the Metropolis algorithm. The visible 
units of a Boltzmann machine are split into an input set and an output set. At each 
stage of the algorithm a Boltzmann machine is running in one of three modes, depending 
upon which subset of V is held fixed. In the training mode both inputs and outputs 
are held fixed and the hidden units are allowed to change state. In the free-running 
mode neither inputs nor outputs are fixed-all units are allowed to flip. In the ‘testing 
for completion’ mode some inputs are fixed and the machine, if it  has learned 
successfully, produces appropriate outputs. The free-running mode is necessary 
because data collected in this mode are required by the feedback mechanism which 
alters the link values. 
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There are several ways to arrive at the Boltzmann machine algorithm. Since the 
energy function can take only a limited number of values, it is useful to consider how 
many patterns could be stored in a network of given size. Suppose there are U visible 
units and h hidden units. For two-state units the possible number of patterns among 
the visible units is 2". However, the energy expression ( 1 )  only has N (  N + 1)/2 = 
( U  + h ) (  U + h + 1)/2 possible values for a given set of link values W Furthermore, only 
a small number of these will be low-lying minima which would ensure the stability of 
stored patterns. Hence, for any set of link values, if patterns are to be associated with 
energy minima then it is only possible to distinguish between all possible 2" states if 
( U  + h ) (  v + h + 1 )  >> 2", which requires exponentially large h. While this would be 
feasible for small U, it would be impossible for any useful application. Because a 
perfect model is not possible, except for small U, the problem is to obtain an optimum 
model (i.e. an optimum set of w,,) given some non-exponential number of hidden units. 
Hinton and Sejnowski (1983, see also Ackley et a1 1985) use the information gain 
(Kullback 1959), G, to provide an optimality condition for W. G is defined as 

G = P, In[ Pa/ P',] 
(I 

(3) 

where P, is the probability of the network being in state a of the visible units when 
the machine is in the training mode and P f ,  is the corresponding probability when the 
machine is running freely without any pattern clamped on. G is zero if and only if 
the probability distributions P and Pf are equal, in which case the machine is modelling 
the set of input patterns perfectly. Otherwise G > 0 and the best model is that which 
minimises G. Since a direct evaluation of G is clearly not possible except for miniscule 
problems, an expression for the partial derivatives aG/aw, is required. For highly 
interconnected non-linear networks this is not usually available (Ackley et a1 1985), 
but a simple relation does exist for a system where the Boltzmann relation (equation 
(2)) holds. The simplification arises because for a Boltzmann distribution the log 
probabilities of states is a linear function of their energies. A derivation is given by 
Ackley et af (1985). The final expression is 

Ww, = - (U T ) ( P , ,  -d,) (4) 

where 

and 

The outer summations in ( 5 )  and (6) are over visible unit states and the inner sums 
are over hidden unit states. af' is the state of unit i when the network is in a global 
state defined by the visible set being in state V, and the hidden set being in state H p .  
The derivatives necessary to minimise G are therefore available, provided that { p , }  
and { p',} are calculated when the machine has reached thermal equilibrium. Thermal 
equilibrium is attained starting from any initial state by carrying out a series of 
Metropolis-type calculations at decreasing temperatures, i.e. by the simulated annealing 
technique described by Kirkpatrick et a1 (1983). Since U, = 0 or 1 ,  p,, is just the average 
probability that both units are in the 1 state when a pattern is clamping the visible 
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units, and  p ;  is the same quantity when the machine is in the free-running mode. In 
their simulations, Ackley et a1 (1985) incremented or decremented the wu by a fixed 
amount depending on the sign of ( p ,  -pf,) ,  instead of adopting a steepest descent 
method as suggested by equation (4). The same procedure has been used in the present 
calculations. 

3. The v-h-v encoder problem 

The encoder problem was proposed as a simple abstraction of the  task of communicating 
information between components of a parallel network (Ackley et a1 1985). It may 
also be viewed as a pattern recognition problem. The visible units are split into two 
groups, VI and V , ,  each with v = v / 2  units. All units in VI are connected to each 
other, as are all units in V, ,  but there are no direct connections between VI and V,. 
Instead, the visible groups communicate via a set of h hidden units. The hidden units 
are not connected to each other, but each is connected to all the visible units. The 
network is therefore the same as figure 1 except for the interconnections within VI 
and V,. The problem is to evolve a set of w,, which allows the visible groups to 
communicate their states to each other. Most of the calculations reported here are for 
a 4-2-4 encoder network. 

In the 4-2-4 encoder problem, there are 24 possible states for each visible group. 
However, in the version studied by Ackley et a1 (1985), though all possible states have 
some probability of occurring in the training set, the statistics are dominated by 
nominated patterns where only one unit in VI and the corresponding unit in V, are 
in the U = 1 state. The training patterns which occur most frequently are the four 
vector pairs: VI = V,=(l,O, 0,O) or (O,l,O,O) or ( O , O ,  1,O) or (O ,O,  0, 1). Less 
frequently, the patterns are ‘noisy’ versions such as VI = (1, 1 ,0 ,0 ) ,  V, = (0, 0, 1,O). 
Because there are only two hidden units, the system can only communicate 22 states. 
The machine must therefore recognise that the four vector pairs above occur most 
often, and  then develop a set of weights which encode these patterns so that they 
correspond to the four possible hidden unit patterns (O ,O) ,  (0, l ) ,  (1,0), ( 1 , l ) .  Since 
both the number of the noisy vectors and which particular noisy vectors occur varies 
from learning cycle to learning cycle during the iterative training process, this is not 
a trivial problem. 

4. Simulation methods 

Full details of the original experiments are given in Ackley et a1 (1985). However, it 
is worth summarising one iteration or ‘learning cycle’. 

( i )  One pattern fixes the states of the visible units. 
(ii) The hidden units are flipped according to a variant of the Metropolis Monte 

Carlo algorithm at a temperature T,,,. 
(iii) The system is annealed to Tmi, by repeating (ii) at successively lower tem- 

peratures. 
(iv) Monte Carlo flips of the hidden units are continued at Tmi, and  statistics are 

gathered about how often pairs of units are on simultaneously. (This accumulates the 
inner sum in equation ( 5 ) . )  

(v) Steps (i)-(iv) are repeated for a set of training patterns. (This accumulates the 
outer sum in equation ( 5 ) . )  
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(vi) All units are now free to flip and the system is annealed to T,,, as in steps 

(vii) Monte Carlo flips of all units are continued at Tm,, and statistics are gathered 

(viii) The connections {w,} are updated on the basis of sgn(p, - -p' , ) .  
It is evident that this is a computationally expensive process, and it is not surprising 

that convergence depends on various parameters which enter the Boltzmann machine 
algorithm. These include how often noisy vectors occur in the training sequence, the 
temperatures used and  the length of time allowed for equilibration in the annealing 
schedule, the length of time over which statistics for { p l , }  and { p',}  are collected (which 
affects the size of uphill steps in G space (Ackley et a1 1985)) and the choice of weight 
update. Some of these factors have been discussed by Ackley et al. Here we focus on 
the effects of temperature and  annealing time because they are the crucial parameters 
in the inner optimisation loop of the algorithm, and we have found that they play a 
major role in determining how the system evolves. 

In 250 simulations of the 4-2-4 encoder, Ackley et a1 (1985) found that the median 
time to find a stable solution was 110 learning cycles and the longest time was 1810 
cycles. Initially we used the same parameter values in order to try to reproduce the 
behaviour found there. In the present calculations we have considered a stable solution 
to have been found on cycle N if the same solution is found on cycles N + 1 ,  
N + 2, . . . , N + 9. In our experience it was rare for a machine to drift from a solution 
after this criterion was satisfied. In 150 simulations we found a median learning time 
of N = 149 cycles. The shortest learning time was 23 cycles, and in 32 instances a 
stable solution was not found in the cut-off time of 400 cycles. In view of the broad 
distribution of convergence times, the present results are not significantly different 
from those of Ackley et al. Starting from a network with all w, = 0, Ackley et a1 
identified three stages of learning in terms of the way in which the weights changed 
with time. We observed identical behaviour. The sizes of the weights obtained when 
learning is complete are also similar to those found by Ackley et al. We have thus 
verified that our program behaves in a similar way to that of the original work. 

(ii) and (iii). 

for { p ' , }  (equation (6)) for the same length of time as for { p , , } .  

5. Results 

5.1. Equilibration and the annealing time 

In the original work (Ackley et a1 1985), when a settling to equilibrium was required 
all the unclamped units were randomised to 0 or  1 with equal probability, and then 
the network was allowed to run for two units of time at a temperature of T = 2 0 ,  
followed by two at T = 15, two at T = 12 and four at  T = 10. It is not obvious why 
these temperatures were chosen or  whether learning in Boltzmann machines is sensitive 
to temperature. Furthermore, it was assumed that this schedule allows the system to 
reach equilibrium. The total annealing schedule, ten units of time, allows each un- 
clamped unit to have ten opportunities to flip states on average. However, in Monte 
Carlo simulations of solids and  liquids, from which the Metropolis method is taken, 
calculations are usually carried out on hundreds of units ( = atoms in that case) and 
it is necessary to allow at least 1000 trial flips per unit before the system is likely to 
have reached equilibrium. It is therefore not obvious that Boltzmann machines reach 
equilibrium under the chosen schedule. This is important, since unless { p U }  and { p b }  
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are collected when the network is at equilibrium, the state probabilities d o  not obey 
the Boltzmann distribution and  equation (4), which is the whole basis of the method, 
no longer holds. 

One way to test whether equilibrium is reached is to extend the number of time 
steps over which statistics for ( E )  are collected at the end of annealing and calculate 
( E )  as a function of time, since equilibrium implies d (E) /d t  = 0. However, since in 
the 4-2-4 encoder there are only 2" possible states for a given set of link strengths, 
the exact value of ( E )  can be calculated without approximation: 

where 2 is the partition function: 

Var2( E )  = (E)'  - (E) '  can also be obtained from equation (7) and 

1024 

{ E ' ) = ( l / Z )  Efexp( -E , /T) .  
> = I  

(9) 

Table 2 shows a typical comparison of ( E )  obtained by averaging after simulated 
annealing using the schedule above, together with the exact sum-over-states results 
from equations (7)-(9). The results are for the free-running mode where all ten units 
are free to flip, and the average was taken over the length of time used to collect { pf,} 
in the simulations of Ackley et a1 (ten units of time) at the lowest annealing temperature, 
Tmin. The weights used were a typical set obtained from a converged learning run. 

Table 2. Energy results for a typical Boltzmann machine 

B M  algorithm Exact SOS 

( E )  22.0 18.9 
var(E)  14.0 14.5 

The annealing schedule is long enough for the system to reach equilibrium, but 
only because the fluctuations are so large in this small system. Useful applications 
would probably require Boltzmann machines with hundreds or thousands of units. 
For large systems the ratio va r (E) / (E)  will be smaller, and  it will then be necessary 
to allow much longer times for equilibration, as is the case in Monte Carlo calculations 
on solids and  liquids. There is already empirical evidence that larger networks require 
longer annealing schedules. In experiments on a 40-10-40 encoder, Ackley et a1 found 
that 'To achieve good performance on the completion tests (i.e. convergence of the 
learning algorithm), it was necessary to use a very gentle annealing schedule during 
testing. The schedule spent twice as long at each temperature and  went down to half 
the final temperature of the schedule used during learning'. This is actually a larger 
increase in real time than a factor of two, since the unit of time in the algorithm is 
proportional to the number of free units. 
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5.2. The e$ect of temperature on the learning rate 

Temperature influences the learning rate by altering the number of energy states which 
are thermally accessible at any stage of the learning algorithm. The partition function 
is one measure of the number of states readily accessible at temperature T. At low T, 
the limiting value of 2 is the ground-state degeneracy of the system (if energies are 
defined relative to the ground-state energy), while at high T, Z approaches the total 
number of states in the system. 

The partition function may be used to investigate several aspects of Boltzmann 
machine behaviour. A Boltzmann machine with all wij = 0 has not learned to solve 
the encoder problem, and, because all states have the same energy, 2 = 1024 for all 
temperatures. However, a solution to the 4-2-4 problem must require at least four 
low-energy states at the lowest temperature of the annealing schedule, Tmin. Given 
that the number of states which must be thermally accessible at Tmin when a Boltzmann 
machine has evolved connections which solve the encoder problem is somewhere 
between 4 and 1024, what number is typically observed? 

Table 3 shows the mean values of the partition function at Tmin and at the highest 
annealing temperature, T,,,. In each case 2 was calculated from the final set of 
weights, i.e. when the convergence criterion was satisfied or after the cut-off time of 
400 iterations. Averages were obtained over converged and unconverged machines 
separately. For the original annealing schedule (Ackley er a1 1985), shown in the 
column headed 'normal T' ,  there are no significant differences between converged and 
unconverged machines. Differences in the connection strengths, which determine 
whether or not the network has formed a satisfactory model of its environment, are 
not reflected in the underlying energy surface. Approximately eight states are available 
at Tmin and approximately 35 states make a significant contribution to Z at T,,,. 

Table 3. A summary of partition function data and the effect of annealing temperature on 
convergence. Z,,, is the mean value of Z at T,,, and Z,,, is the mean value at T,,,,,. 

LOW r Normal T High T 

Annealing schedule 
(number of timesteps 
at temperature T )  

Number of runs 
Fraction of runs 
that converged in 
400 cycles 
Median learning 
time (cycles) 
Z,," 

converged 
unconverged 
all machines 

converged 
unconverged 
all machines 

Zm,, 

2 at 4 
4 at 3 
4 at 2 

50 

0.56 

350 

3 . 6 1  1.30 
5.041 1.99 
4.24 * 1.69 

12.54*4.84 
15.05*5.51 
13.64k5.16 

2 at 20 
2 at 15 
2 at 12 
4 at 10 

150 

0.79 

149 

7.75* 1.85 
7.61 * 1 .73  
7 .721 1.82 

35.98 * 6.00 

35.241 5.82 
32.51 14 .79  

2 at 100 
2 at 7 5  
2 at 60 
4 at 50 

20 

0.10 

> 400 

1 5 . 7 5 1  1.39 
11.9911.79 
12.37r 1.89 

61.75 * 0.62 
48.73 * 4.99 
50.03 * 5.43 
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At low temperatures one might expect learning to be difficult because not enough 
states are thermally accessible. Convergence should also be poor at high annealing 
temperatures because too many states are available and the algorithm will fail to settle 
into a good solution. Fifty low-temperature Boltzmann machines were run with the 
annealing schedule (2 at T=4 ,  4 at T=3 ,  4 at T = 2 )  and 20 high-temperature runs 
were carried out with the schedule (2 at T = 100, 2 at T = 75, 2 at T = 60, 4 at 7" = 50). 
The results are summarised in table 3. In both cases convergence is much worse. There 
is therefore some window of temperature at which learning in Boltzmann machines is 
possible. In much larger systems it might be profitable to look for phase transitions 
separating these three regions, but quantitative results would be meaningless in the 
small system studied here. 

More detailed information about the energy surfaces can be obtained from the 
density of states, p ( E ) .  The partition function is a crude measure of p ( E )  at low 
energies. The mean, p (  E ) ,  over all machines run with the normal annealing schedule 
is plotted in figure 2 in terms of the reduced quantity E = E/ Tmin. The distribution is 
rather broad, but a large number of states become important at energies just above 
the highest annealing temperature ( E  = 2). This fact, combined with the partition 
function data for high T runs where convergence is poor, suggests that the 'normal' 
annealing schedule is close to  the high-temperature end of the learning window. 

0 5 10 15 20 
E 

Figure 2. The mean densify of states P ( E )  over all 150 machines run with the normal T 
annealing schedule. 

Ackley et a1 observed three stages of learning in the encoder problem. The first 
phase (starting from all wij =0)  involves the development of negative weights 
throughout the network. In the second phase, the hidden units develop positive weights 
to some of the units in the visible groups, and the links between a hidden unit and 
equivalent units in V ,  and V, are roughly symmetric. By the end of the second stage 
most of the hidden unit codes are being used but some codes are utilised for more 
than one pattern. During the third stage, these final conflicts are resolved and a good 
solution is found. It is interesting to ask how the energy surface evolves during the 
learning process. As a lowest-order look at this, we have followed Zmin as a function 
of time (in learning cycles). Because of the small system size and the relatively large 
step size in the weight update, there are quite large fluctuations in Zmin from cycle to 
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cycle, especially when the weights are small at short times. However, some clear trends 
do emerge. Zmin drops rapidly over the first few cycles. For the normal T runs the 
latest cycle on which Zmin > 30 is approximately 30 cycles. Zmin( t )  then oscillates in 
the range 15-25 for, typically, another 30 cycles before dropping to final values 
consistent with the means in table 3. This behaviour is reminiscent of the description 
by Ackley et al of the three stages of learning and it is tempting to relate these stages 
to particular 2 regimes. If, however, there are quantitative correlations, they are hidden 
by the large fluctuations. 

5.3. Low-energy states and the relationship to spin glasses 

The Boltzmann machine energy function, equation ( l ) ,  is similar to the Hamiltonian 
of an Ising model in the absence of an external field: 

H = - C J  y (+, a; a=*l.  (10) 
y 

For a fully cbnnected network, and if the Jy are independent random variables with 
a Gaussian distribution, equation (10) is the Sherrington-Kirkpatrick (SK) spin-glass 
Hamiltonian (Sherrington and Kirkpatrick 1975, Kirkpatrick and Sherrington 1978). 
The SK spin glass is known to support such interesting phenomena as an ultrametric 
space amongst the overlaps between pure states (Mezard et a1 1984). The overlap 
between pure states 1 and 2 is 

(11) ( 1 )  ( 2 )  q12 = ( 1 / N )  c g1 U ,  

where (+‘I1 and U ( ’ )  are two sets of spins with the same set of interactions. 
However, there are also some important differences between the SK Hamiltonian 

and the Boltzmann machine Hamiltonian. In particular, the units of a Boltzmann 
machine need not be fully interconnected-they are not in the encoder problem. 
Furthermore, the Boltzmann machine links wv are not random variables; they must 
reflect correlations in the input patterns. To what extent do trained Boltzmann machines 
resemble spin glasses? Do they support an ultrametric topology? The latter question 
may have practical implications since ultrametric spaces are desirable for pattern 
classification (Jardine and Sibson 1971). We note in passing that spin-glass techniques 
have proved fruitful in understanding a simpler neural network model associated with 
Hopfield (1982). The existence and nature of phase transitions in the Hopfield model, 
which relate in that case to the pattern storage capacity of the network, have been 
elucidated by Amit et al (1985a, b), Wallace (1985), Bruce et a1 (1986) and Gardner 
(1986). 

Whether or not the low-energy states of the Hopfield model have an ultrametric 
structure is an open question. No evidence for ultrametricity in the higher-energy 
minima, those which are usually obtained by the descent method used in Hopfield’s 
storage prescription, has been found in numerical simulations of a 512 node model 
(Wallace 1986). For the spin-glass case, ultrametricity has only been observed in 
numerical simulations of the SK model using N > 6 4  spins. Smaller systems are 
dominated by finite-size effects (see, e.g., Young 1985). For the same reasons, it is not 
possible to observe ultrametricity directly in Boltzmann machines with only ten units. 
Unfortunately, because the number of learning cycles to reach convergence increases 
very rapidly with N (Ackley et a1 1985), and because each learning cycle requires 
longer annealings as N increases, it would be extremely difficult to simulate large 
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enough instances of the encoder problem to search for ultrametricity directly. However, 
it is possible to gain indirect evidence by comparison with a study of the S K  model 
for 4 s N 

Since Boltzmann machines involve global energy optimisations using simulated 
annealing, it is the low-energy states that are of interest. For these small realisations 
of the SK model, Young and Kirkpatrick (1982) found that the number of spins, AN, 
which have to be flipped to go from the ground state to the first excited state on average 
varies as 

20 spins by Young and  Kirkpatrick (1982). 

AN = 0.12 N ' i 2 .  (12) 

For N = 10, AN = 2.3. In our 4-2-4 encoder simulations, we can take the final sets 
of w, compute the 1024 energies and calculate AN directly. If AN is found to be close 
to 2.3, then the distribution of low-energy states is similar to that in small instances 
of the SK model and it would be reasonable to surmise that large Boltzmann machines 
might show ultrametric structure in the Hamming distance, which is the natural distance 
measure. If, on the other hand, there are no correlations between low-energy states, 
they should be distributed randomly, which implies AN = N / 2  = 5. Figure 3 ( a )  shows 
a histogram of the Hamming distance (number of flips) from the ground state to the 
first excited states for all 150 simulations. (There are no significant differences between 
machines which converged and  those which did not.) The results peak strongly around 
the random value N / 2  and the only sign of sK-like behaviour is in a small number of 
machines where AN = 2 or  3. There is no reason to support that there is anything 
special about the first excited state, and figures 3(b)-(d)  show similar results for the 
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Figure 3. The Hamming distance of low-energy excited states from the ground state for 
all 150 normal T machines. ( a )  Ground state to first excited state; ( b )  ground state to 
second excited state; (c)  ground state to third excited state; ( d )  ground state to fourth 
excited state. 
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next three low-lying states. For those machines which have AN = 2 or 3 for the ground 
state to first excited state transition, it is found that the number of spin flips from the 
ground state to the second, third and fourth excited states are close to random values. 
Thus there is no evidence for SK spin-glass behaviour in any of the Boltzmann machine 
simulations. 

6. Conclusions 

The networks of artificial ‘neurons’ proposed recently are novel variants of the Ising 
model which differ from those that arise in disordered magnetic systems. We have 
investigated some of the statistical mechanics of one of the more promising models: 
Hinton and Sejnowski’s Boltzmann machine. It is found that the annealing schedule 
proposed by Ackley et al is adequate to attain a Boltzmann distribution of states, on 
which the algorithm for the minimisation of G depends. However, the necessity to 
reach a Boltzmann distribution means that the algorithm will require massive computa- 
tions for large networks. Furthermore, there is a window of annealing temperatures 
at which learning is possible. We have used direct calculations of the partition function 
to characterise the number of states which are thermally accessible at effective annealing 
temperatures. The density of states gives some insight into the sensitivity of the learning 
rate to annealing temperatures. 

Of the better known physical systems, these networks are closest to spin glasses. 
We have therefore looked for similarities to well characterised spin-glass models such 
as the SK model. In simulations of small systems, it is not possible to observe such 
interesting phenomena as ultrametncity directly. However, we are able to make 
comparisons with previous studies of small instances of the SK spin glass. We find a 
different structure in the low-energy states which result from the Boltzmann machine 
learning algorithm. In Boltzmann machines, a random distribution of low-energy states 
in terms of Hamming distance is observed. 
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